Science tests competing theories or models by evaluating the similarity of their predictions against observational experience. Thus, how we measure similarity fundamentally determines what we learn. In machine learning and scientific modeling, similarity metrics are used as objective functions. A classic example being mean squared error, which is the optimal measure of similarity when errors are normally distributed and independent and identically distributed (iid). In many cases, however, the error distribution is neither normal nor iid, so it is left to the scientist to determine an appropriate objective. Here, we review how information theory can guide that selection, then demonstrate the approach with a simple hydrologic model.
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transformer. The former estimate a set of latent variables that represent the causal factors, and the latter governs their interaction. Causal capsules and tensor transformers may be implemented using shallow autoencoders, but for a scalable architecture we employ block algebra and derive a deep neural network composed of a hierarchy of autoencoders. An interleaved kernel hierarchy preprocesses the data resulting in a hierarchy of kernel tensor factor models. Inverse causal questions are addressed with a neural network that implements multilinear projection and estimates the causes of effects. As an alternative to aggressive bottleneck dimension reduction or regularized regression that may camouflage an inherently underdetermined inverse problem, we prescribe modeling different aspects of the mechanism of data formation with piecewise tensor models whose multilinear projections are well-defined and produce multiple candidate solutions. Our forward and inverse neural network architectures are suitable for asynchronous parallel computation.
translated by 谷歌翻译
User equipment is one of the main bottlenecks facing the gaming industry nowadays. The extremely realistic games which are currently available trigger high computational requirements of the user devices to run games. As a consequence, the game industry has proposed the concept of Cloud Gaming, a paradigm that improves gaming experience in reduced hardware devices. To this end, games are hosted on remote servers, relegating users' devices to play only the role of a peripheral for interacting with the game. However, this paradigm overloads the communication links connecting the users with the cloud. Therefore, service experience becomes highly dependent on network connectivity. To overcome this, Cloud Gaming will be boosted by the promised performance of 5G and future 6G networks, together with the flexibility provided by mobility in multi-RAT scenarios, such as WiFi. In this scope, the present work proposes a framework for measuring and estimating the main E2E metrics of the Cloud Gaming service, namely KQIs. In addition, different machine learning techniques are assessed for predicting KQIs related to Cloud Gaming user's experience. To this end, the main key quality indicators (KQIs) of the service such as input lag, freeze percent or perceived video frame rate are collected in a real environment. Based on these, results show that machine learning techniques provide a good estimation of these indicators solely from network-based metrics. This is considered a valuable asset to guide the delivery of Cloud Gaming services through cellular communications networks even without access to the user's device, as it is expected for telecom operators.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Micro-CT images of the renal arteries of intact rat kidneys, which had their vasculature injected with the contrast agent polymer Microfil, were characterized. Measurement of inter-branch segment properties and the hierarchical structure of the vessel trees were computed by an automated algorithmic approach. The perfusion territories of the different kidneys, as well as the local diameters of the segmented vasculature were mapped onto the representative structures and visually explored. Various parameters were compared in order to outline key geometrical properties, properties which were shown to not have a wide range of inter-specimen variation. It is shown that the fractal scaling in non-symmetric branching reveals itself differently, than in symmetric branching (e.g., in the lung the mean bronchial diameters at each generation are closely related). Also, perfused tissue is shown to have very little inter-specimen variation and therefore could be used in future studies related to characterizing various disease states of tissues and organs based on vascular branching geometry.
translated by 谷歌翻译
Recently, Person Re-Identification (Re-ID) has received a lot of attention. Large datasets containing labeled images of various individuals have been released, allowing researchers to develop and test many successful approaches. However, when such Re-ID models are deployed in new cities or environments, the task of searching for people within a network of security cameras is likely to face an important domain shift, thus resulting in decreased performance. Indeed, while most public datasets were collected in a limited geographic area, images from a new city present different features (e.g., people's ethnicity and clothing style, weather, architecture, etc.). In addition, the whole frames of the video streams must be converted into cropped images of people using pedestrian detection models, which behave differently from the human annotators who created the dataset used for training. To better understand the extent of this issue, this paper introduces a complete methodology to evaluate Re-ID approaches and training datasets with respect to their suitability for unsupervised deployment for live operations. This method is used to benchmark four Re-ID approaches on three datasets, providing insight and guidelines that can help to design better Re-ID pipelines in the future.
translated by 谷歌翻译
We present NusaCrowd, a collaborative initiative to collect and unite existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have has brought together 137 datasets and 117 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their effectiveness has been demonstrated in multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and its local languages. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and its local languages. Our work is intended to help advance natural language processing research in under-represented languages.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
In a wide variety of fields, analysis of images involves defining a region and measuring its inherent properties. Such measurements include a region's surface area, curvature, volume, average gray and/or color scale, and so on. Furthermore, the subsequent subdivision of these regions is sometimes performed. These subdivisions are then used to measure local information, at even finer scales. However, simple griding or manual editing methods are typically used to subdivide a region into smaller units. The resulting subdivisions can therefore either not relate well to the actual shape or property of the region being studied (i.e., gridding methods), or be time consuming and based on user subjectivity (i.e., manual methods). The method discussed in this work extracts subdivisional units based on a region's general shape information. We present the results of applying our method to the medical image analysis of nested regions-of-interest of myocardial wall, where the subdivisions are used to study temporal and/or spatial heterogeneity of myocardial perfusion. This method is of particular interest for creating subdivision regions-of-interest (SROIs) when no variable intensity or other criteria within a region need be used to separate a particular region into subunits.
translated by 谷歌翻译